• Рус Русский
  • Eng English (UK)

Scientific and technical journal established by OSTU. Media registration number: ПИ № ФС77-75780 dated May 23, 2019. ISSN: 2220-4245. Subscription index in the online catalog «Subscription Press» (www.akc.ru): E28002. Subscription to the electronic version is available on the «Rucont» platform.
The journal is included in the Russian Science Citation Index and in the List of Russian Scientific Journals .

Search results

  • V.1(21), 2015
    6-11

    Influence chemical properties of polymers and modes ir-energy supply on the strength and plasticity insulation in local technology to extend the life of electric cars traction rolling stock

    In order to extend the service life of electric machines traction rolling stock has been proposed recovery technology insulation using infrared energy, will improve the quality of insulation in terms of the breakdown voltage and hardness. This article analyzes and estimated of experimental studies conducted in two different meaningful of the work in this direction. Presents an analysis these works in terms of distinctive features and conclusions of the pilot studies. According to the analysis formulated a new hypothesis about the need to address when capsulating the insulation and its elasticity. Also set new directions for future research.
  • V.1(45), 2021
    11-22

    Research of the hardness of the varnish layer of the insulation fingers of the locomotive traction electric motor with the convective and thermo-radiation drying methods

    The article describes the study of the mechanical characteristics of polymer insulation, in particular the hardness of the insulating lacquer layer with a different methods of drying it. The influence of the hardness and elasticity of the dried impregnating material on the reliability of the insulating structures during the operation of electrical equipment of the traction rolling stock is analyzed. A device has been created and presented that allows for a simple measurement of the hardness of the varnish film on a pre-selected object of study, which was the insulating finger of the bracket of the brush holder of an electric locomotive traction motor. The process of measuring hardness and results for three groups of insulating fingers are presented: insulating fingers without coating by an impregnating compound (press material); impregnating material, sealed by convective method; impregnating material baked by thermoradiation method. On the basis of the obtained practical results, the effect of the energy supply on the curing process when performing drying by the convective and thermoradiation methods is explained. Also presented are photographs of an electrically insulating lacquer layer from an electron microscope, which allow the microstructure to be evaluated for the presence of gas inclusions, which have a negative effect on both mechanical and electrical indicators of polymeric insulation. A study was made of the relationship between the parameter of electrical and mechanical strength. On the basis of experimental data, the dependence of the breakdown voltage on the hardness of the insulating lacquer layer was constructed.
  • V.1(17), 2014
    14-19

    Research of effectiveness of convection and methods thermoradiative capsulating winding insulation for repair of electric machines tpn

    The article studies comparing the effectiveness of using thermoradiation and convective drying methods insulation windings of electrical machines of traction rolling stock, impregnated with various modern varnishes and compounds at their factory and depot repair. Objective factors in the comparison methods are parameters such as temperature class, electric strength and cementing capacity. The author substantiates advantage thermoradiation method over convective.
  • V.2(18), 2014
    24-30

    Study of efficiency oscillating regimes in energy supply infrared technology in capsulating winding insulation repair of electrical motors of locomotives

    The article is devoted to continue presenting the results of experimental studies on the identifi-cation of rational modes of IR energy supply in encapsulation technology insulation windings of electric machines (EM) of traction rolling stock (TPS). In this paper, published the results of com-paring the effectiveness of the use of various oscillatory modes of infrared (IR) energy supply in the process of winding insulation encapsulation the frontal parts armature winding of the traction mo-tor type NB-514B electric locomotives series "Ermak" on the process plant at their depot and fac-tory repair. In studies to identify rational oscillating modes IR energy supply option duty cycle remained unchanged for the existing design of the generator of heat radiation technological installation, and changed only option cyclical, characterized by changing the speed of rotation of the armature trac-tion motor on the plant corresponding to 5, 25 and 50 Hz when the drive installation works from the frequency converter. The process of encapsulation was carried out first only short-wavelength radiation generated incoherent halogen emitters, then only at medium-wavelength radiation generated pulse ceramic radiators, and finally - with alternating heating medium short- and medium-wavelength radiation, i.e. with these two types of emitters in the spectral-oscillating mode IR energy, on which is currently obtained patent for the invention. For comparability of experimental studies same dose irradiation of segments frontal part of the armature windings of the traction motor type NB-514B electric lo-comotives «Ermak». Objective factors when comparing encapsulation modes to identify the most efficient are pa-rameters such as dielectric strength (the value of the breakdown voltage insulating tape) and ce-menting capacity.
  • V.2(38), 2019
    33-47

    Features of vibration arising in a pair of «electric locomotive wheel - rail» in curves of small radius

    The paper is vibration investigation in a case of guiding of railroad vehicle in curves with low radius. Experimental methods. Examine results of the investigation of vibrations on box bearing of railroad locomotive in a case of mountain trucking with large count of curves with low radius. It is show, that in a case of locomotive guiding in a low radius curves a pseudo-random vibration arise. The level of the pseudo-random vibration in a low radius curves exceeds the vibration in the rail joint, but vibration in the guiding is semi continuous. In a case of locomotive working, also the harmonics of gearing is shown. The spectral density of vibration accelerations is presented in a three-dimensional form, coded in color on a two-dimensional time-frequency diagram for estimating the vibration spectra and their probable sources.
  • V.4(52), 2022
    57-65

    Increasing the technical characteristics of autonomus locomotives by a lithium-ion traction accumulator battery

    The main subject of this article is consideration of the possibility of applying in electric circuit of the diesel locomotive hybrid power sourse, thats consists of diesel internal combustion engine and traction energy storage (li-ion accumulator battery). The main target of this work is to describe the effectiveness of the applying Li-ion energy storage in traction and diesel internal combusion engine start modes. At the same time, the regular used lead-acit battery is excluded from the locomotive circuit and replaced by a traction accumulator battery. By using numerical simulation methods, the article considers the possibility of starting a diesel internal combustion engine with a traction li-ion accumulator battery and possibility of the increasing the torque of electric traction motors and technical characteristics of the locomotive when the li-ion traction accumutalor battery is turned on as an additional source of energy. The relevance of the results is to get data about increasing carrying mass of the train when using a hybvid energy source on a diesel locomotive. The results of the work demonstrate the effectiveness of the use of a traction battery it traction and engine start modes, while improving the performance of the locomotive. The conclusions of the work contain an analysis of the results of mathematical modeling of the use of a traction battery.
  • V.3(51), 2022
    71-79

    Evaluation of dynamic loading of wheel-motor units of electric locomotives 2es6

    The article sets the task of determining the level of dynamic loading in the «trolley-leash-traction motor» subsystem to reduce the dynamic impact in the «locomotive-path» system. The model of vertical vibrations of traction rolling stock, obtained on the basis of the Lagrange equation of the second kind, in the form of a system of fourteen differential equations allows us to estimate the loading of locomotive units in operation, integrated using the MathCAD application package. The approximation of random disturbances using the spectral density of the path irregularity of Professor A. I. Belyaev is chosen as the spectral density of random disturbances. A more detailed design scheme of the crew has been compiled and in order to simplify the calculation within the engineering error, a single-mass discrete model of the path is used. Entering symmetric coordinates allows us to obtain from the original system of differential equations a simplified system with characteristic equations with simple roots, therefore, the natural oscillation frequencies of the bouncing of the body, trolley and wheelset will be determined with minimal error. The transfer function is determined by Kramer's formulas. With the help of a computer, the values are calculated and graphs of the amplitude-frequency characteristics of vertical movements, maximum accelerations of the body, trolley, traction motor and wheelset of the electric locomotive in question are constructed. A comparative analysis of the calculation results and empirical data is carried out. Based on a comparative analysis, it can be argued that the considered mathematical model of vibrations of the electric locomotive 2ES6 «Sinara» is adequate and allows determining the dynamic loading of the locomotive for the entire range of operating speeds. The task of changing the existing design of the suspension system of the traction electric motor of the electric locomotive in question and the mathematical analysis of the vibrations of its nodes in further research is set.
  • V.3(27), 2016
    76-83

    Application of wave response method for fault finding in insulation system of auxiliary machines armature coils

    The aim of this article is results representing of work focused to automation of electrical machines armature coils diagnostics process based on wave response method. Technical decisions used in development of mobile device for insulation diagnostics via wave response method described. Techniques of generalized diagnostics coefficient calculation described. Article presents test results of NB436V and NB-431P auxiliary machines installed VL-10 electromotive.
  • V.4(48), 2021
    85-96

    Determination of electric rolling stock operational indicators optimal values according to the criterion of energy efficiency

    The article deals with the issue of improving the energy efficiency of DC and AC electric locomotives operated at the enterprises of JSC “Russian Railways». The main goals and objectives of the development program and energy strategy of JSC «Russian Railways» are analyzed and briefly considered. In accordance with these tasks, the relevance of scientific research in the field of improving the energy efficiency of electric locomotives is substantiated. The current data on traction rolling stock, on modern traction resource management systems and on Russian and foreign scientific research in the field of energy efficiency are analyzed. As a result of the analysis, it was found that most of the studies are aimed at studying the influence of key operational factors on energy efficiency indicators, so, in this case, on the specific power consumption for train traction. However, the reverse question has been poorly studied - the selection of the train mass and the technical speed on the basis of a preliminary assessment of the specific power consumption for train traction by analyzing the statistical data of trips on a certain section of the railway. The purpose of this study is to assess the possibility and develop a method for determining the optimal values of the key parameters of the operation of electric freight locomotives in order to achieve maximum operational efficiency in relation to them according to the criterion of energy efficiency. Two models were created in the program «Complex of calculations of traction power supply» (CORTES) - for DC and AC electric locomotives, describing the dependence of the energy efficiency indicator (specific power consumption for train traction) on operational indicators, such as the train mass and the technical speed. The initial data for further modeling were obtained by modeling trips on a conditional site.
  • V.4(48), 2021
    96-108

    Formation of a mathematical model of electric locomotives 2es6 vertical oscillations taking into account the dynamics wheel-motor units

    The article presents an analysis of the failures of the mechanical components of the mainline electric locomotives 2ES6 «Sinara» in operation at the landfill of the West Siberian Railway, the causes and consequences of failures of the most vulnerable nodes are determined. The analysis of failures of the mechanical components showed that a significant share of them falls on the components of the wheel-motor unit of the locomotive. The analysis of the design features of the crew part is carried out. The main structural difference of suspension is the absence of leaf springs in the axle box stage, which were widely used on electric locomotives of previous generations. In the body stage, helical springs (Flexicoil) are used instead of the cradle suspension. The connection of the traction motor with the trolley frame is a pendulum. The suspension of the traction motor to the trolley frame is carried out through a leash. When considering the vibrations of railway carriages, it is customary to represent the locomotive and the track as a single mechanical system. The task of forming a mathematical model of the «electric locomotive - path» system is set and a mathematical model of vertical vibrations of an electric locomotive is formed taking into account the dynamics of wheel-motor blocks based on the Lagrange equation of the second kind in the form of a matrix equation, which allows us to assess the loading of mechanical components in operation. The mathematical model represents a system of differential equations in which six equations determine the fluctuations of the bouncing and galloping of the body and trolleys, four - the galloping of wheel-motor blocks, four - the bouncing of wheel pairs together with the reduced mass of the track. The obtained mathematical model makes it possible to determine the level of dynamic loading of the components of the mechanical part of the electric locomotive 2ES6 «Sinara» by integrating the matrix equation using the MathCAD application package.